Abstract

Health effects of heat waves with high baseline temperatures in areas such as India remain a critical research gap. In these regions, extreme temperatures may affect the underlying population’s adaptive capacity; heat wave alerts should be optimized to avoid continuous high alert status and enhance constrained resources, especially under a changing climate. Data from registrars and meteorological departments were collected for four communities in Northwestern India. Propensity Score Matching (PSM) was used to obtain the relative risk of mortality and number of attributable deaths (i.e., absolute risk which incorporates the number of heat wave days) under a variety of heat wave definitions (n = 13) incorporating duration and intensity. Heat waves’ timing in season was also assessed for potential effect modification. Relative risk of heat waves (risk of mortality comparing heat wave days to matched non-heat wave days) varied by heat wave definition and ranged from 1.28 [95% Confidence Interval: 1.11–1.46] in Churu (utilizing the 95th percentile of temperature for at least two consecutive days) to 1.03 [95% CI: 0.87–1.23] in Idar and Himmatnagar (utilizing the 95th percentile of temperature for at least four consecutive days). The data trended towards a higher risk for heat waves later in the season. Some heat wave definitions displayed similar attributable mortalities despite differences in the number of identified heat wave days. These findings provide opportunities to assess the “efficiency” (or number of days versus potential attributable health impacts) associated with alternative heat wave definitions. Findings on both effect modification and trade-offs between number of days identified as “heat wave” versus health effects provide tools for policy makers to determine the most important criteria for defining thresholds to trigger heat wave alerts.

Highlights

  • IntroductionInterest in heat waves and extreme heat events has increased globally over the past few years, following high profile heat events in the US and Europe that significantly impacted human health

  • Interest in heat waves and extreme heat events has increased globally over the past few years, following high profile heat events in the US and Europe that significantly impacted human health.Previous analysis of the 1995 Chicago heat wave illustrated gaps in the methodologies for the comparison of health effects of heat waves across regions [1], which led to application of time-seriesInt

  • Longer periods of time are labeled as heat waves versus the numbers of mortalities which are attributable to these different types of heat waves, which could potentially be averted by implementation of an alert system

Read more

Summary

Introduction

Interest in heat waves and extreme heat events has increased globally over the past few years, following high profile heat events in the US and Europe that significantly impacted human health. Previous analysis of the 1995 Chicago heat wave illustrated gaps in the methodologies for the comparison of health effects of heat waves across regions [1], which led to application of time-series. Res. Public Health 2019, 16, 2089; doi:10.3390/ijerph16122089 www.mdpi.com/journal/ijerph

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call