Abstract
Training in anastomosis is fundamental in neurosurgery due to the precision and dexterity required. Biological models, although realistic, present limitations such as availability, ethical concerns, and the risk of biological contamination. Synthetic models, on the other hand, offer durability and standardized conditions, although they sometimes lack anatomical realism. This study aims to evaluate and compare the efficiency of anastomosis training models in the intra-extracranial cerebral bypass procedure, identifying those characteristics that enhance optimal microsurgical skill development and participant experience. A neurosurgery workshop was held from March 2024 to June 2024 with 5 vascular techniques and the participation of 22 surgeons. The models tested were the human placenta, the Wistar rat, the chicken wing artery, the nasogastric feeding tube, and the UpSurgeOn Mycro simulator. The scales used to measure these models were the Main Characteristics Score and the Evaluation Score. These scores allowed us to measure, qualitatively and quantitatively, durability, anatomical similarity, variety of simulation scenarios, risk of biological contamination, ethical considerations and disadvantages with specific infrastructure. The human placenta model, Wistar rat model, and UpSurgeOn model were identified as the most effective for training. The human placenta and Wistar rat models were highly regarded for anatomical realism, while the UpSurgeOn model excelled in durability and advanced simulation scenarios. Ethical and cost implications were also considered. The study identifies the human placenta and UpSurgeOn models as optimal for training in intra-extracranial bypass procedures, emphasizing the need for diverse and effective training models in neurosurgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.