Abstract

Cyclometalated iridium complexes, emitters of choice in organic light-emitting diodes (OLEDs), hold great potential for near-infrared (NIR) applications. Upon increasing the conjugation size and chemical complexity of the ligands, as required to push the emission toward the NIR), overall high-molecular-weight complexes (both homoleptic and heteroleptic β-diketonate ones) are obtained, posing related issues in OLED processing. One, so far barely explored, question arises: “Why endow Ir(III) with three or two emissive ligands when one might work just as well?” Herein, as proof of concept for OLED technology, we disclose three novel deep-red to NIR emitters of formula Ir(C^N)2(iqbt), with a single iqbt (1-(benzo[b]thiophen-2-yl)-isoquinolinate) ligand responsible for the emission in the NIR range. (C^N) are cyclometalated ligands with higher triplet energy than that of iqbt. We demonstrate that the presence of a single iqbt ligand is sufficient to enable efficient phosphorescence matching that of homoleptic Ir(iqbt)3; moreover, the Ir(C^N)2(iqbt) based OLEDs display efficiency exceeding the one of Ir(iqbt)3. These compounds offer several important benefits: (i) advantageous synthetic protocols limiting to the last step of the use of novel and synthetic costly NIR ligands (implying a lower amount of ligand required), (ii) commercially available (C^N) to prepare the starting Ir chloro-dimers, and (iii) lower molecular weight of the complexes compared to that of the homoleptic parent ones fruitful for easier vacuum thermal processing of the emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.