Abstract

Glycosaminoglycans (GAGs) are carbohydrate polyionic polymers that participate in a host of critically important biological processes. A significant difficulty in the comprehensive structural characterization of GAGs is the determination of specific sulfation position isomers. We chose to circumvent sulfate lability by its liberation followed by specific isotope exchange that makes it amenable to methylation, collisional induced dissociation, and MSn disassembly for a detailed structural characterization. A set of chemistries that include sulfate release, isotopic (CD3- and CD3-CO-) replacement, and methylation have been modified to yield a stable product ideal for sequencing by MSn. Disassembly of these samples provides a detailed read-out of sequence inclusive of all sulfation sites. As documenting steps, we applied these chemical modifications to a series of disaccharides and a synthetic GAG pentamer, Arixtra®. Upon disassembly, glycosidic and cross-ring cleavages define the monomer composition including individual sulfation positions. The N- and O-sulfates are differentiated by deuterium-containing mass compositions. The uronic methylesters do not significantly alter the fragmentation patterns. A fragment library of these products is being assembled as an adjunct to our larger fragment library, some 15years in the making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.