Abstract

Anomaly detection in medical imaging is a complex challenge, exacerbated by limited annotated data. Recent advancements in generative adversarial networks (GANs) offer potential solutions, yet their effectiveness in medical imaging remains largely uncharted. We conducted a targeted exploration of the benefits and constraints associated with GAN-based anomaly detection techniques. Our investigations encompassed experiments employing eight anomaly detection methods on three medical imaging datasets representing diverse modalities and organ/tissue types. These experiments yielded notably diverse results. The results exhibited significant variability, with metrics spanning a wide range (area under the curve (AUC): 0.475-0.991; sensitivity: 0.17-0.98; specificity: 0.14-0.97). Furthermore, we offer guidance for implementing anomaly detection models in medical imaging and anticipate pivotal avenues for future research. Results unveil varying performances, influenced by factors like dataset size, anomaly subtlety, and dispersion. Our findings provide insights into the complex landscape of anomaly detection in medical imaging, offering recommendations for future research and deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.