Abstract

ABSTRACT With the intensive development and implementation of information and communication technologies in manufacturing, large amounts of heterogeneous data are now being generated, gathered and stored. Handling large amounts of complex data – often referred to as big data – represents a challenge as there are many new approaches, methods, techniques, and tools for data analytics that open up new possibilities for exploiting data by converting them into useful information and/or knowledge. However, the application of advanced data analytics in manufacturing lags behind in terms of penetration and diversity in comparison with other domains such as marketing, healthcare and business, meaning that the available data often remain unexploited. This paper proposes a new conceptual framework for systematically introducing big-data analytics into manufacturing systems. To this end, the paper defines a new stepwise procedure that identifies what knowledge and skills, and which reference models, software and hardware tools, are needed for the development, implementation and operation of data-analytics solutions in manufacturing systems. The feasibility of the proposed conceptual framework is demonstrated in a case study from an engineer-to-order company and by mapping the framework to several previous data-analytics projects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.