Abstract
To produce jasmine tea of excellent quality, it is crucial to select jasmine flowers at their optimal growth stage during harvesting. However, achieving this goal remains a challenge due to environmental and manual factors. This study addresses this issue by classifying different jasmine flowers based on visual attributes using the YOLOv7 algorithm, one of the most advanced algorithms in convolutional neural networks. The mean average precision (mAP value) for detecting jasmine flowers using this model is 0.948, and the accuracy for five different degrees of openness of jasmine flowers, namely small buds, buds, half-open, full-open and wiltered, is 87.7%, 90.3%, 89%, 93.9% and 86.4%, respectively. Meanwhile, other ways of processing the images in the dataset, such as blurring and changing the brightness, also increased the credibility of the algorithm. This study shows that it is feasible to use deep learning algorithms for distinguishing jasmine flowers at different growth stages. This study can provide a reference for jasmine production estimation and for the development of intelligent and precise flower-picking applications to reduce flower waste and production costs. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.