Abstract

Achieving adaptive behavior in artificial systems, analogous to living organisms, has been a long-standing goal in electronics and materials science. Efforts to integrate adaptive capabilities into synthetic electronics traditionally involved a typical architecture comprising of sensors, an external controller, and actuators constructed from multiple materials. However, challenges arise when attempting to unite these three components into a single entity capable of independently coping with dynamic environments. Here, we unveil an adaptive electronic unit based on a liquid crystal polymer that seamlessly incorporates sensing, signal processing, and actuating functionalities. The polymer forms a film that undergoes anisotropic deformations when exposed to a minor heat pulse generated by human touch. We integrate this property into an electric circuit to facilitate switching. We showcase the concept by creating an interactive system that features distributed information processing including feedback loops and enabling cascading signal transmission across multiple adaptive units. This system responds progressively, in a multi-layered cascade to a dynamic change in its environment. The incorporation of adaptive capabilities into a single piece of responsive material holds immense potential for expediting progress in next-generation flexible electronics, soft robotics, and swarm intelligence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.