Abstract

We report on developing a wearable infrared (IR) display based on stretchable conductive fibers fabricated through an expansion–contraction process. The expansion process creates a gap between the strands of spandex fibers. This is achieved by immersing the fibers in a solvent where carbon nanotubes (CNTs) are dispersed, thereby embedding the CNTs. Contraction is achieved through a drying process, which removes the gap between the strands of the spandex fibers. This ensures that the CNTs remain embedded, even after repeated stretching. The CNT-embedded spandex fibers are arranged into a 5 × 7 pixel array. The intensity of the IR rays emitted from the fibers can be controlled by adjusting their temperature, which is achieved by varying the driving voltage. Full-color IR images and displays of letters and numbers are realized through precise control of the IR light intensity. The wearable IR display developed in this study opens up exciting possibilities for integration into advanced systems such as military identification, artificial intelligence robots, autonomous driving, and aerospace industry applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.