Abstract
The SARS-CoV-2 pandemic led to a huge increase in global pathogen genome sequencing efforts, and the resulting data are becoming increasingly important to detect variants of concern, monitor outbreaks, and quantify transmission dynamics. However, this rapid up-scaling in data generation brought with it many IT infrastructure challenges. In this paper, we report about developing an improved system for genomic epidemiology. We (i) highlight key challenges that were exacerbated by the pandemic situation, (ii) provide data infrastructure design principles to address them, and (iii) give an implementation example developed by the Swiss SARS-CoV-2 Sequencing Consortium (S3C) in response to the COVID-19 pandemic. Finally, we discuss remaining challenges to data infrastructure for genomic epidemiology. Improving these infrastructures will help better detect, monitor, and respond to future public health threats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.