Abstract

Since their inception, field programmable gate arrays have seen an enormous growth in usage because they can dramatically reduce design and manufacturing costs. However, the time required for placement (a key step in the design) is dominating the compilation process. In this paper, we take some initial theoretical steps towards developing an efficient genetic algorithm for solving the placement problem by developing suitable recombination operators for performing placement. According to Holland, when the genetic algorithm recombines two parent genotypes, the differences between them define a genotypic subspace, and any offspring produced should be confined to this subspace. Those recombination operators that violate this principle can direct a search away from the region containing the parent genotypes and this is contrary to the intended task for recombination. This is often detrimental to search performance. This paper contributes the development of an intuitive visualization technique that can be used to easily detect violations of the previous principle. The efficacy of the proposed methodology is demonstrated and it is demonstrated that many standard recombination operators violate this principle. The methodology is then used to guide the development of novel operators that exhibit substantial (and statistically significant) improvements in performance over standard recombination operators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call