Abstract

Integrating Light Detection And Ranging (LiDAR) and Hyperspectral Imaging (HSI) enhances the assessment of tropical forest degradation and regeneration, which is crucial for conservation and climate mitigation strategies. This study optimized procedures using combined airborne LiDAR, HSI data, and machine learning algorithms across 12 sites in the Brazilian Amazon, covering various environmental and anthropogenic conditions. Four forest classes (undisturbed, degraded, and two stages of second-growth) were identified using Landsat time series (1984–2017) and auxiliary data. Metrics from 600 samples were analyzed with three classifiers: Random Forest, Stochastic Gradient Boosting, and Support Vector Machine. The combination of LiDAR and HSI data improved classification accuracy by up to 12% compared with single data sources. The most decisive metrics were LiDAR-based upper canopy cover and HSI-based absorption bands in the near-infrared and shortwave infrared. LiDAR produced significantly fewer errors for discriminating second-growth from old-growth forests, while HSI had better performance to discriminate degraded from undisturbed forests. HSI-only models performed similarly to LiDAR-only models (mean F1 of about 75% for both data sources). The results highlight the potential of integrating LiDAR and HSI data to improve our understanding of forest dynamics in the context of nature-based solutions to mitigate climate change impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.