Abstract

Maintenance of machines is highly necessary to prolong the operational lifespan of induction motors. Prioritizing preventive measures is crucial in order to prevent more significant damage to the machinery. One of these measures includes detecting abnormalities, such as misalignment, in the motor shaft. This research is aimed to detect the misalignment of induction motor experimentally by varying the coupling between normal and parallel misalignment. The signal readings were analyzed in the frequency domain using Fast Fourier Transform (FFT). The results revealed that in the case of coupling misalignment, a peak appeared at f = 13.5 Hz, whereas in the parallel misalignment condition with a 1 cm misalignment, a peak was found at f+fr = 20 Hz. By utilizing the Convolutional Neural Network (CNN) system, normal and parallel conditions can be detected with an accuracy level of 87.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.