Abstract

A droplet possesses the ubiquity and potential to harvest a vast amount of energy. To exploit droplets effectively, a novel output enhancement strategy that can coexist and create synergy with the recently studied droplet-based electricity generator (DEG) and material/surface structure modification must be investigated. In this study, a mechanical buckling-based 4D printed elastic hybrid droplet-based electricity generator (HDEG) consisting of a DEG and solid-solid triboelectric nanogenerator (S-S TENG) is first presented. During the electricity generation process of the DEG by droplet impact, the HDEG structure, which is merged via a simple 4D printing technique, permits the conversion of dissipated energy into elastic energy, resulting in an S-S TENG output. The HDEG outputs are naturally integrated owing to the simultaneous activation of a single droplet, resulting in an approximately 30% improvement over the output of a single DEG. Internal and external parametric studies are performed as HDEG design guidelines. The HDEG exhibits a 25% better energy supply performance than that of a single DEG, demonstrating its applicability as a power source. This research proposes the way toward a hybrid system that efficiently harvests energy from ubiquitous droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call