Abstract
Colorectal cancer (CRC) is a rapidly escalating public health concern, which underlines the significance of its early detection and the need for the refinement of current screening methods. In this systematic review, we aimed to analyze the potential advantages and limitations of artificial intelligence(AI)-based computer-aided detection (CADe) systems as compared to routine colonoscopy. This review beginsby shedding light on the global prevalence and mortality rates of CRC, highlighting the urgent need for effective screening techniques and early detection of this cancer type. It addresses the problems associated with undetected adenomas and polyps and the subsequent risk of interval CRC following colonoscopy. The incorporation of AI into diagnostics has been studied, specifically the use of CADe systems which are powered by deep learning. The review summarizes the findings from 13 randomized controlled trials (RCTs) (2019-2023), evaluating the impact of CADe on polyp and adenoma detection. The findings from the studies consistently show that CADe is superior toconventional colonoscopy procedures in terms of adenoma detection rate (ADR)and polyp detection rate(PDR), particularly with regard to small and flat lesions which are easily overlooked. The review acknowledges certain limitations of the included studies, such as potential performance bias and geographic limitations. The review ultimately concludes that AI-assisted colonoscopy can reduce missed lesion rates and improve CRC diagnosis. Collaboration between experts and clinicians is key for successful implementation. In summary, this review analyzes recent RCTson AI-assisted colonoscopy for polyp and adenoma detection. It describes the likely benefits, limitations, and futureimplications of AI in enhancing colonoscopy procedures and lowering the incidence of CRC. More double-blinded trials and studies among diverse populations from different countries must be conducted to substantiate and expand upon the findings of this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.