Abstract

Climate change and population growth are degrading coastal ecosystems and increasing risks to communities and infrastructure. Reliance on seawalls and other types of hardened shorelines is unsustainable in an era of rising seas, given the costs to build and maintain these structures and their unintended consequences on ecosystems. This is especially true for communities that depend on coastal and marine ecosystems for livelihoods and sustenance. Protecting and restoring coral reefs and coastal forests can be lower cost, sustainable alternatives for shoreline protection. However, decision-makers often lack basic information about where and under what conditions ecosystems reduce risk to coastal hazards and who would benefit. To better understand where to prioritize ecosystems for coastal protection, we assessed risk reduction provided by coral reefs, mangroves, and seagrass along the entire coast of The Bahamas, under current and future climate scenarios. Modeled results show that the population most exposed to coastal hazards would more than double with future sea-level rise and more than triple if ecosystems were lost or degraded. We also found that ecosystem-based risk reduction differs across islands due to variation in a suite of ecological, physical, and social variables. On some populated islands, like Grand Bahama and Abaco, habitats provide protection to disproportionately large numbers of people compared to the rest of the country. Risk reduction provided by ecosystems is also evident for several sparsely populated, remote coastal communities, in some cases with large elderly populations. The results from our analyses were critical for engaging policy-makers in discussions about employing natural and nature-based features for coastal resilience. After hurricanes Joaquin and Matthew hit The Bahamas in 2016 and 2017, our assessment of coastal risk reduction and the multiple benefits provided by coastal ecosystems helped pave the way for an innovative loan from the Inter-American Development Bank to the Government of The Bahamas to invest in mangrove restoration for coastal resilience. This work serves as an example for other regions and investors aiming to use assessments of ecosystem services to inform financing of natural and nature-based approaches for coastal resilience and climate adaptation.

Highlights

  • Habitat We identified five main types of coastal and nearshore habitats that occur along the coast of The Bahamas that may provide some degree of coastal protection: coral reefs, seagrass beds, mangrove forests, coastal coppice forests, and Caribbean pine forests

  • In particular we report on the spatial distribution of risk, the drivers of risk, and the potential for coastal and nearshore ecosystems to provide protection to people and with future sea-level rise (SLR)

  • With modeled SLR, we found that the extent of shoreline most exposed to coastal hazards would more than double, and the total population would nearly triple (Figure 2B)

Read more

Summary

Introduction

Building resilient communities is a shared challenge for the world’s population living along the coast and in the future (Adger et al, 2005; McGranahan et al, 2007; Kron, 2013). To address this challenge, communities typically engineer barriers along the coast. Hardened shorelines can be expensive to build and maintain, and can lead to unintended shoreline erosion, degradation or loss of habitat, and impacts on communities that depend on healthy coastal ecosystems for protection, subsistence, and livelihoods (Burgess et al, 2004; Hillen et al, 2010; Jones et al, 2012; Gittman et al, 2015; Rangel-Buitrago et al, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call