Abstract

Abstract This study presents an analytical model of a strontium titanate (SrTiO3)-based biological field-effect transistor (BioFET) for cholesterol detection. SrTiO3, known for its high dielectric permittivity, surface charge regulation, and superior ionic and thermal conductivity, is utilized to enhance biosensor functionality. The BioFET biosensor employs an SrTiO3 gate functionalized with a cholesterol-specific enzyme, facilitating the potentiometric measurement of cholesterol concentrations. The model establishes a quantitative relationship between cholesterol concentration and the gate voltage in the enzyme-immobilized SrTiO3. It demonstrates that SrTiO3-based BioFETs are highly selective for cholesterol detection, indicating their potential in developing diagnostic tools for cholesterol-related conditions and food quality monitoring. The analytical model effectively predicts the detection mechanism's behavior in electrochemical BioFET biosensors, underscoring the biosensor's innovative application in various fields including microelectronics, sensors, catalysis, and photovoltaics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call