Abstract

Simple SummaryThe production of bio-based materials, including organic acids, antibiotics, enzymes, ethanol, and hydrogen, is generally done by the cultivation of suspended cells rather than using immobilized cells. However, several studies suggest the application of productive biofilms as a reliable alternative for biocatalysis, with many advantages over suspended-growth systems. This review gives an overview of the breakthrough in the application of biofilm platforms for the sustainable production of valuable compounds, with particular insight into the latest advances in the production of recombinant proteins. Productive biofilms are shown to improve production rates and product yields, demonstrating great potential for industrial applications.In recent years, abundant research has been performed on biofilms for the production of compounds with biotechnological and industrial relevance. The use of biofilm platforms has been seen as a compelling approach to producing fine and bulk chemicals such as organic acids, alcohols, and solvents. However, the production of recombinant proteins using this system is still scarce. Biofilm reactors are known to have higher biomass density, operational stability, and potential for long-term operation than suspended cell reactors. In addition, there is an increasing demand to harness industrial and agricultural wastes and biorefinery residues to improve process sustainability and reduce production costs. The synthesis of recombinant proteins and other high-value compounds is mainly achieved using suspended cultures of bacteria, yeasts, and fungi. This review discusses the use of biofilm reactors for the production of recombinant proteins and other added-value compounds using bacteria and fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.