Abstract

Recently, high-entropy materials (HEMs) have gained increasing interest in the field of energy storage technology on account of their unique structural characteristics and possibilities for tailoring functional properties. Herein, the development of this class of materials for electrochemical energy storage have been reviewed, especially the fundamental understanding of entropy-dominated phase-stabilization effects and prospective applications are presented. Subsequently, critical comments of HEMs on the different aspects of battery and supercapacitor are summarized with the underlying principles for the observed properties. In addition, we also summarize their potential advantages and remaining challenges, which will ideally provide some general guidelines and principles for researchers to study and develop advanced HEMs. The diversity of material design contributed by the entropy-mediated concept provides the researchers numerous ideas of new candidates for practical applications and ensures further research in the emerging field of energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.