Abstract

Immunotherapy inhibiting the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interaction has emerged as one of the most attractive cancer treatment strategies. So far, the clinically used PD-1/PD-L1 inhibitors are monoclonal antibodies, but monoclonal antibodies have several limitations, such as poor pharmacokinetic properties, unchecked immune responses and high production cost. The development of small-molecule inhibitors targeting PD-1/PD-L1 interaction is showing great promise as a potential alternative or complementary therapeutic approach of monoclonal antibodies. In this article, the authors classify the reported biphenyl small-molecule inhibitors into symmetrical and asymmetrical types based on their structural features and further review their representative inhibitors and biological activities, as well as the binding models for providing insight into further exploration of more potent biphenyl small-molecule inhibitors targeting PD-1/PD-L1 interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call