Abstract

We report the design, fabrication, and characterization of improved solid-state elements intended for individual regulation of field emitters part of high-density arrays. We demonstrate a high-yield, CMOS compatible fabrication process of single-crystal, vertical, ungated, n-type silicon field-effect transistors (FETs); each device behaves as a current source when is biased at a voltage larger than its drain-source saturation voltage. An ungated FET in saturation connected in series to a field emitter can compensate for the wide variation in current-voltage characteristics of the field emitters due to the tip radii spread present in any field emitter array, which should result in emitter burn-out protection, larger array utilization, and smaller array emission non-uniformity. Using 1-2 Ωcm single-crystal n-Si wafers, we fabricated arrays of 25 μm tall vertical ungated FETs with 0.5 μm diameter that span two orders of magnitude of array size. Experimental characterization of the arrays demonstrates that the current is limited with > 3.5 V bias voltage to the same ∼6 μA (6 A.cm-2) per-FET value. Finite element simulations of the device predict a saturation voltage close to the experimental value and a saturation current within a factor of two of the experimental value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call