Abstract

Hydrogen peroxide (H2O2) is a versatile and zero-emission material that is widely used in the industrial, domestic, and healthcare sectors. It is clear that it plays a critical role in advancing environmental sustainability, acting as a green energy source, and protecting human health. Conventional production techniques focused on anthraquinone oxidation, however, electrocatalytic synthesis has arisen as a means of utilizing renewable energy sources in conjunction with available resources like oxygen and water. These strides represent a substantial change toward more environmentally and energy-friendly H2O2 manufacturing techniques that are in line with current environmental and energy goals. This work reviews recent advances in two-electron water oxidation reaction (2e-WOR) electrocatalysts, including design principles and reaction mechanisms, examines catalyst design alternatives and experimental characterization techniques, proposes standardized assessment criteria, investigates the impact of the interfacial milieu on the reaction, and discusses the value of in situ characterization and molecular dynamics simulations as a supplement to traditional experimental techniques and theoretical simulations, as shown in Figure 1. The review also emphasizes the importance of device design, interface, and surface engineering in improving the production of H2O2. Through adjustments to the chemical microenvironment, catalysts can demonstrate improved performance, opening the door for commercial applications that are scalable through tandem cell development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.