Abstract
Tracking and recognition of human motion has become an important research area in computer vision. In real world conditions it constitutes a complicated problem, considering cluttered backgrounds, gross illumination variations, occlusions, self-occlusions, different clothing and multiple moving objects. These ill-posed problems are usually tackled by making simplifying assumptions regarding the scene or by imposing constraints on the motion. Constraints such as that the contrast between the moving people and the background should be high and that everything in the scene should be static except for the target person are quite often introduced in order to achieve accurate segmentation. Moreover, the motion of the target person is often confined to simple movements with limited occlusions. In addition, assumptions such as known initial position and posture of the person are usually imposed in tracking processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.