Abstract

A literature review of up-to-date methods to strengthen Ti/carbon-fiber-reinforced polymer (CFRP) hybrid joints is given. However, there are little or no studies on Ti/CFRP joints by carbon fiber plug insert, which takes advantage of the extremely high surface adhesion area of ~6 μm CFs. Therefore, we cover the current status and review our previously published results developing hybrid joints by a CF plug insert with spot-welded Ti half-lengths to enhance the safety levels of aircraft fan blades. A thermoset Ti/CF/epoxy joint exhibited an ultimate tensile strength (UTS) of 283 MPa when calculated according to the rule of mixtures (RM) for the CF cross-section portion. With concern for the environment, thermoplastic polymers (TPs) allowed recyclability. However, a drawback is easy CF pull-out from difficult-to-adhere TPs due to insufficient contact sites. Therefore, research on a novel method of homogeneous low voltage electron beam irradiation (HLEBI) to activate a bare CF half-length prior to dipping in a TP resin was reviewed and showed that the UTS by the RM of Ti/EBCF/acrylonitrile butadiene styrene (ABS) and Ti/EBCF/polycarbonate (PC) joints increased 154% (from 55 to 140 MPa) and 829% (from 30 to 195 MPa), respectively, over the untreated sample. The optimum 0.30 MGy HLEBI prevented CF pull-out by apparently growing crystallites into the TP around the CF circumference, raising the UTS amount closer to that of epoxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call