Abstract

Recent advances in the RF atomic iodine generator for oxygen-iodine lasers are presented. The generator is based on the RF discharge dissociation of a suitable iodine donor immediately before its injection to the flow of singlet oxygen. The discharge is ignited directly in the iodine injector, and the configuration is ready for the laser operation. The dissociation fraction was derived from the atomic iodine number density measured at a presupposed position of laser resonator. The dissociation fraction and the fraction of RF power spent on the dissociation (discharge dissociation efficiency) were measured for the following donors: CH3I, CF3I and HI. A significant improvement of the discharge stability was achieved by increasing the cross-sectional area of the exit injection holes and employing a tangential inlet of working gas into the discharge chamber. The flow rates 0.15 mmol/s and 0.19 mmol/s of produced atomic iodine were achieved using the HI and CF3I, respectively. The atomic iodine number density in the supersonic flow attained 4.22 × 1014 cm-3. The dissociation efficiency was substantially better for HI than for studied organic iodides.© (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.