Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNA that cleavage mRNA targets in sequence-specific manner or the inhibition of translation, which regulates gene expression at the post-transcriptional level. miRNAs are involved in the regulation of plant growth, metabolism and stress response. miR167 family is one of the highly conserved miRNA families in plants. It functions mainly by regulating the auxin response factors (ARFs) and IAA-Ala resistant3 (IAR3) genes, and participates in regulating the development of roots, stems, leaves and flowers, flowering time, embryonic development, seed development and stress response. Here, we reviewed the biological functions of miR167 family and its target genes in plant growth and development and stress response, and further discussed the application prospect of miR167 in agricultural production. Furthermore, this review provides references for the further study of miR167 family in plants.
Highlights
In the process of plant growth and development, lateral roots are crucial for plants to absorb water and mineral elements, and the development of lateral roots is affected by many factors, auxin can integrate intrinsic and extrinsic environmental signals to regulate lateral root development [54]. miR167 is involved in auxin signaling
MiR167 has been widely studied for its role in regulating plant growth and development and biotic stress. miR167 directly or together with other miRNAs regulates plant growth and development in Arabidopsis thaliana, tobacco, rice, soybean, corn, camellia, longan, wheat. miR167 has been found to regulate many plant development processes, including lateral root, leaf, flowering, reproductive organs, embryo and seed development and response to stress
Studies have shown that when Rhizobium does not exist, miR167 members remain at a low level, while rhizobium induces a strong expression of miR167 [8, 110]. miR167c-GmARF8 may be an effective method to improve the nodulation efficiency of soybean in the absence of rhizobia
Summary
In the process of plant growth and development, lateral roots are crucial for plants to absorb water and mineral elements, and the development of lateral roots is affected by many factors, auxin can integrate intrinsic and extrinsic environmental signals to regulate lateral root development [54]. miR167 is involved in auxin signaling. Seven members of the Osa-miR167 gene family were identified to be inhibited by salt stress, which upregulates the expression of OsARF6, promotes lateral root elongation and accumulates more energy to enhance plant stress resistance [98]. Researchers confirmed this view in salt-tolerant maize. Under salt stress, miR393, miR167 and ARF formed a network mechanism in response to stress, which stimulated the up-regulation of miR393 and inhibited the release of AUX/IAA, and the up-regulation of miR167 expression induced the decrease of ARF expression, the development of the plant is weakened and the stress tolerance is enhanced [100, 101]. The reproductive organ development and flowering time of crops are important for production and breeding. miR167 is involved in regulating flower organ development and flowering time, helping plants transition from vegetative growth stage to reproductive development stage [11, 15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.