Abstract

Red blood cells (RBCs) exhibit a unique deformability, which enables them to change shape reversibly in response to an external force. The deformability of RBCs allows them to flow in microvessels while transporting oxygen and carbon dioxide. In this review, we discussed the major determinants of RBC deformability, which include cell geometry, internal viscosity, rheological properties of the membrane, osmotic pressure, calcium, nitric oxide, temperature, ageing, and depletion of adenosine triphosphate. Additionally, we highlighted the various methods and techniques used to measure RBC deformability. Individual cell analyses (pipette aspiration and optical tweezers) and bulk cell analyses (ektacytometry, multiple channels) were described and compared. Finally, we reviewed the correlation between RBC deformability and clinical outcomes such as diabetic microangiopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.