Abstract

Congenital and infantile cataracts produce deprivation amblyopia and can thus cause lifelong visual impairment. Successful management is dependent on early diagnosis and referral for surgery when indicated. Accurate optical rehabilitation and postoperative supervision are essential.The timing of surgery and its relationship to the duration of deprivation is important. Unilateral congenital cataract surgery within 6 weeks of birth produces the best outcomes. The equivalent 'latent' period for bilateral visual deprivation may be longer at around 10 weeks. Visual deprivation has a significant impact on the development of fixation stability. Major form deprivation, even after early surgery, leads to nystagmus. This is mostly manifest latent nystagmus (MLN). The latent period for fixation stability may be as short as 3 weeks. Preoperative congenital nystagmus (CN) can convert to more benign MLN after surgery. Infantile IOL implantation is becoming increasingly accepted. A satisfactory long-term refractive result requires that allowance be made for childhood axial growth and myopic shift. In a series of 25 infants (33 eyes) implanted before 12 months of age, the mean myopic shift at 12 months was 4.83 D. This increased to 5.3 D in infants implanted before 10 weeks. The initial desired refractive outcome following IOL implantation is thus hypermetropia, with the degree dependent on the age of the child. Glaucoma or ocular hypertension is a common complication following paediatric cataract surgery. Microphthalmia and surgery in early infancy are risk factors. Tonometry results may be influenced by the increased corneal thickness seen in aphakic and pseudophakic children. The long-term prognosis of eyes with aphakic glaucoma is not necessarily poor but intraocular pressure control may require three or more medications. Surgical intervention appears to be necessary in over a quarter of eyes. Posterior capsule opacification (PCO) is common in infants undergoing primary lens implantation. Primary capsulotomy and anterior vitrectomy reduce the risk of PCO. In the absence of anterior vitrectomy, primary posterior capsulotomy does not prevent visual axis opacification. Further developments will continue to be driven by clinical research. The prevention of capsule opacification and cellular proliferation may in future be achieved by the use of devices to specifically target epithelial cells at surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.