Abstract

The growing global energy demand and heightened environmental consciousness have contributed to the increasing interest in green energy sources, including hydrogen production. However, the efficacy of this technology is contingent upon the efficient separation of charges, high absorption of sunlight, rapid charge transfer rate, abundant active sites and resistance to photodegradation. The utilization of photocatalytic heterostructures coupling two materials has proved to be effective in tackling the aforementioned challenges and delivering exceptional performance in the production of hydrogen. The present article provides a comprehensive overview of operational principles of photocatalysis and the combination of photocatalytic and piezo-catalytic applications with heterostructures, including the transfer behavior and mechanisms of photoexcited non-equilibrium carriers between the materials. Furthermore, the effects of recent advances and state-of-the-art designs of heterostructures on hydrogen production are discussed, offering practical approaches to form heterostructures for efficient hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.