Abstract

Molecular events governing the interplay between the intermediate snail host, Biomphalaria glabrata, and its parasitic trematodes are gradually being unraveled. The last 20 years has seen an upsurge in the number of gene sequences and proteins that are expressed, differentially regulated, and diversified in this snail in relation to its role as an obligate host for an important human pathogen, Schistosoma mansoni, the causative agent of schistosomiasis in the Western Hemisphere. Although regarded as a good model organism for studying the complexities of host–pathogen interactions, B. glabrata also serves as being useful in bridging the information gap that exists between locotrophozoans and the more popular model organisms that belong to other clades (ecdyzoa and deuterostomes). By the application of a variety of molecular tools, emerging results show the significance of innate defense and stress-related genes in the snail host/parasite relationship. In this chapter, we will provide an overview of some of the recent advances that have been made in the field of genomics and proteomics of this snail, mainly in relation to schistosomes. Although information remains for the most part rudimentary, significant advances have been made in the molecular characterization of certain genes, such as FREPs and the nimbus mobile genetic element. Key enzymes participating in the snail’s ability to either support or reject the parasite infection, such as hydrolases and oxidoreductases, have also been characterized. A significant milestone, the completion of the 931-Mb genome sequence of this snail, is also anticipated soon. Collectively, all these advances, unless interest and/or funding opportunities wane, should create a favorable research environment for attracting more investigators into the field of molecular malacology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call