Abstract

Schizophrenia is a debilitating mental disorder with relatively high prevalence (~1%), during which positive manifestations (such as psychotic states) and negative symptoms (e.g., a withdrawal from social life) occur. Moreover, some researchers consider cognitive impairment as a distinct domain of schizophrenia symptoms. The imbalance in dopamine activity, namely an excessive release of this neurotransmitter in the striatum and insufficient amounts in the prefrontal cortex is believed to be partially responsible for the occurrence of these groups of manifestations. Second-generation antipsychotics are currently the standard treatment of schizophrenia. Nevertheless, the existent treatment is sometimes ineffective and burdened with severe adverse effects, such as extrapyramidal symptoms. Thus, there is an urgent need to search for alternative treatment options of this disease. This review summarizes the results of recent preclinical and clinical studies on phosphodiesterase 10A (PDE10A), which is highly expressed in the mammalian striatum, as a potential drug target for the treatment of schizophrenia. Based on the literature data, not only selective PDE10A inhibitors but also dual PDE2A/10A, and PDE4B/10A inhibitors, as well as multifunctional ligands with a PDE10A inhibitory potency are compounds that may combine antipsychotic, precognitive, and antidepressant functions. Thus, designing such compounds may constitute a new direction of research for new potential medications for schizophrenia. Despite failures of previous clinical trials of selective PDE10A inhibitors for the treatment of schizophrenia, new compounds with this mechanism of action are currently investigated clinically, thus, the search for new inhibitors of PDE10A, both selective and multitarget, is still warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.