Abstract
The growth of large-volume semi-insulating CdZnTe single crystals with improved structural perfection has been demonstrated by the electrodynamic gradient (EDG) technique and active control of the Cd partial pressure in the ampoule. The EDG furnace nearly completely eliminates the uncontrolled radiative heat transport commonly encountered in traditional Bridgman systems where the charge and furnace move relative to each other. Since the new furnace utilizes electronically controlled high-precision gradient translation, it achieves superior thermal stability throughout the growth. The control of the Cd partial pressure allowed the solidification and cool-down of the ingots close to the stoichiometric composition. As a result, the formation and incorporation of large-size (/spl ges/1 /spl mu/m diameter) Te inclusions was avoided during crystallization and ingots with high structural perfection were achieved. Adequate electrical compensation has been achieved in most of the crystal growth experiments yielding CdZnTe crystals with bulk electrical resistivity in the 10/sup 9/-10/sup 10/ /spl Omega//spl middot/cm range and electron mobility-lifetime product as high as /spl mu//spl tau//sub e/=1.2/spl times/10/sup -3/ cm/sup 2//V. The materials exhibit good spectral performance in the parallel plate detector configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.