Abstract

Tumor is one of the most serious diseases that threaten human health and social development, and it is the second most common cause of death worldwide. The latest statistics show that malignant tumors have surpassed cardiovascular disease as the leading cause of death in developed countries. Drug resistance, metastasis, and recurrence of tumors continue to present urgent challenges in clinical treatment. Tumor stem cells (TSCs) are a specific subset of cells that possess high capabilities of self-renewal, differentiation potential, tumorigenicity and drug resistance. They are resistant to non-specific treatment methods such as chemotherapy and radiotherapy, and play a crucial role in tumor initiation, metastasis, drug resistance, and recurrence. The surface markers, stemness maintenance mechanisms, microenvironment, and metabolic reprogramming of TSCs have become areas of intense research focus. The latest research results provide novel targets and strategies for the identification of TSCs and targeted therapy. This paper reviews the surface markers (CD133, CD44, etc.), self-renewal and epithelial mesenchymal transition (EMT) signaling pathways (Wnt/β-catenin, Hedgehog, etc.), microenvironment characteristics, metabolic reprogramming (glycolysis, oxidative phosphorylation, etc.) and their roles in the initiation, development, metastasis and drug resistance of TSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call