Abstract

Over the last decade, advances in high-throughput sequencing technologies have revolutionised biological research, making it possible for DNA/RNA sequencing of any organism of interest to be undertaken. Sequencing approaches are now routinely used in the detection and characterisation of (novel) viruses, investigation of host-pathogen interactions, and effective development of disease treatment strategies. For the sequencing and identification of viruses of interest, metagenomics approaches using infected host tissue are frequently used, as it is not always possible to culture and isolate these pathogens. High-throughput sequencing can also be used to investigate host-pathogen interactions by investigating (temporal) transcriptomic responses of both the host and virus, potentially leading to the discovery of novel opportunities for treatment and drug targets. In addition, viruses in environmental samples (e.g. water or soil samples) can be identified using eDNA/metagenomics approaches. The promise that recent developments in sequencing brings to the field of invertebrate virology are not devoid of technical challenges, including the need for better laboratory and bioinformatics strategies to sequence and assemble virus genomes within complex tissue or environmental samples, and the difficulties associated with the annotation of the large number of novel viruses being discovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call