Abstract

EEG interpretation by visual inspection of waveforms, using the assumption that activity at a given electrode is a representation of only the activity of the cortex immediately beneath it, has been the traditional form of EEG analysis since its inception. The relatively recent advent of digital EEG has allowed more advanced analysis of EEG data and has shown that the simple visual inspection described above is a simplistic form of analysis. This is especially true when one is attempting to localize an epileptogenic focus using EEG spikes or seizure onset data. Spatiotemporal analysis of scalp voltage fields has allowed for improved localization of likely cerebral origins of such waveforms. Equivalent dipole source modeling is one such technique and, although not perfect, provides improved characterization of spike and seizure sources as compared to previous methods when properly interpreted. The use of other modern techniques, such as 3D MRI reconstructions and realistic head models, can further improve accuracy of dipole localization and allow for the synthesis of EEG and imaging data, which may be invaluable, especially in cases of pre-surgical epilepsy evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call