Abstract

Shape memory polymer (SMP) is an excellent smart material, which can sense and perform active shape change as preprogrammed. So far, there are a wide variety of stimulus-responsive SMPs being developed, including thermal-, electro-, magnetic-, photo-, microwave-, ultrasound-responsive SMPs and so on. Heating and electricity are traditional stimuli for contact actuating SMPs. In recent decades, the remote actuation of SMPs through light irradiation, magnetic field, microwave field and ultrasound field have received tremendous attentions, especially applied in biological environment, aqueous environment as well as aerospace environment. Besides, the multi-stimuli control and multi-stage deformation of SMP intelligent systems can be flexibly realized by combining various actuation methods. For rapid fabrication of personalized smart structures and architectures, 4D printing using SMPs have been proposed and underwent increasing growth to meet the practical demands. This review summarizes the progress in SMP research, with the focus on remote-actuation strategies, multi-stimuli-controlled structures, and the 4D printing of intelligent integrated systems. Besides, the comprehensive exploitation of their shape memory functions in biomedical engineering, soft robots, actuators, aerospace engineering and information storage are addressed effectively. At last, the application prospects, current problems and future challenges facing research are elaborated, so as to provide appropriate guidance for interdisciplinary study and further development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.