Abstract

AbstractThe application of ultrasonic assisted extraction to extract seed oils for multifaceted food applications is discussed in this study. Seed oils, which are notable sources of health‐promoting characteristics and reservoirs of fatty acids and phytochemicals, are being targeted for effective extraction. Conventional techniques of oil extraction, including mechanical pressing and rendering, have limitations such as low extraction rate, high energy consumption, and low yield. In this context, ultrasonic assisted extraction is green and fast oil extraction technology with a greater extraction rate and low energy consumption. Ultrasound assisted oil extraction is mostly used technique since it is environmentally friendly and can be easily integrated with other extraction processes. Ultrasound‐aided extraction uses less solvent than traditional extraction methods. In this process, cavitation bubbles form in the solvent and burst, causing changes in pressure and temperature that expedite the mass transfer of solutes into solvent. The miscella, including the solvent and oil mixture, is then desolventized using evaporators, followed by steam‐stripping to remove the extracted oil. The current review paper discusses the characteristics of ultrasonic extractions for efficient oil extraction (extraction duration, ultrasound frequency, temperature, solvent employed, and ultrasound type). The conventional and non‐conventional oil extraction methods from sources have been examined in this article, in addition to the ultrasound assisted extraction. Along with traditional and advanced oil extraction techniques, the use of ultrasonication in conjunction with other cutting‐edge techniques is covered in this article.Practical applicationsUltrasound assisted oil extraction extracts oil from vegetables, oilseeds, and nuts by using a suitable carrier. The key parameters influencing ultrasound aided extraction of oilseed include particle shape and size, moisture content of seed, amount of solvent, and extraction time/temperature. The ultimate extraction yield is influenced by the extraction time, operating frequency, operational temperature, solvent type, and proportion, and ultrasonicator design. This technique consumes less energy and requires less maintenance. It is quite efficient and reliable. On this basis, ultrasound aided extraction may be utilized commercially to increase oil extraction rate from oil seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call