Abstract

RNA molecules carry out various cellular functions, and understanding the mechanisms behind their functions requires the knowledge of their 3D structures. Different types of computational methods have been developed to model RNA 3D structures over the past decade. These methods were widely used by researchers although their performance needs to be further improved. Recently, along with these traditional methods, machine-learning techniques have been increasingly applied to RNA 3D structure prediction and show significant improvement in performance. Here we shall give a brief review of the traditional methods and recent related advances in machine-learning approaches for RNA 3D structure prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.