Abstract

Ceramic materials are notable for their rigidity, insulation and resistance to hostile environment. Nevertheless, if a stressed ceramic component is exposed to chemical attack, it may suffer from a form of delayed fracture known as static fatigue. From the point of view of a designer, it is clearly desirable to determine the behavior of sub-critical crack growth; the crack path and crack growth rate, as a function of material properties and loading conditions are of particular interest. This paper presents a review of advances in stress assisted corrosion problem in history and its corresponding numerical approaches in the last decades, and finally, comes up with consideration and crucial suggestions for future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call