Abstract

Radiomics was first introduced by Lambin et al. in 2012, and since then, research in this field has grown rapidly. Researchers have shown great interest in developing efficient methods for automatically extracting a large number of quantitative features from medical images, aiming to enhance diagnostic accuracy and predictive capability. Although there has been a rise in Radiomics studies focusing on intrahepatic cholangiocarcinoma (ICC) in recent years, comprehensive reviews are still relatively scarce. This study explores how Radiomics technology can be utilized in modeling analyses to predict lymph node metastasis, microvascular invasion, and early recurrence of ICC, as well as the application of deep learning in these analyses. This paper provides a brief overview of the current state of Radiomics research and offers references for future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.