Abstract

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm−1) and the -OH stretching (3700 to 3200 cm−1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.