Abstract
AbstractThis review paper comprehensively analyzes recent advancements in optical fiber‐based biosensors, focusing on conventional fiber and photonic crystal structures. This paper overviews the significant applications of optical fiber biosensors, including bioimaging, quality analysis, food safety, and field environment monitoring, setting the stage for subsequent discussions. The primary objective of the review is to systematically evaluate recent literature concerning optical fiber‐based biosensors, emphasizing their sensitivities and resolutions. The second section explores integrating plasmonic materials such as graphene, TDMC, germanium, black phosphorus, and silicon within optical fiber biosensors, elucidating their roles in enhancing sensitivity and resolution in biosensing applications. A detailed examination of photonic crystal fibers (PCF) follows, categorizing them into internally and externally metal film‐coated biosensors, highlighting their distinct advantages and limitations. Comparative analyses in two tables delineate the performance and sensitivity of optical fiber‐based biosensors, mainly focusing on different coating strategies. The final section of the review discusses emerging trends and applications in optical fiber biosensing technologies, underscoring their potential to transform biomedical and environmental monitoring fields. By synthesizing recent developments and challenges, this review aims to offer researchers and practitioners a comprehensive understanding of optical fiber‐based biosensors, facilitating informed decision‐making and driving further advancements in the field.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.