Abstract

Various models so far proposed for the mechanism of hydrogen embrittlement (HE) of steels are critically reviewed with respect to the manifestation of hydrogen in the fracture process. Recent studies that elucidate the hydrogen states and their relevance to HE are discussed. Particular attention is paid to the role of deformation-induced defects that interact with hydrogen. A model is proposed in which increased vacancy density and agglomeration lead to the promotion of failure. The model ascribes HE to the context of ductile fracture in which vacancies play the primary role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.