Abstract

The fast development of urbanisation and industrialisation has led to a rise in nitrogen oxide (NOx) emissions, specifically nitric oxide (NO). One effective method for reducing the harmful effects of this dangerous air pollutant on both human health and the environment is the photocatalytic oxidation of NO. Z-scheme heterojunctions enhance incident light utilisation and increase photocatalytic activity, eventually leading to better NO oxidation performance by encouraging the effective separation of charges and migration. A comprehensive discussion of Z-scheme-based heterojunctions is provided in this review paper, with a focus on their applications in the photocatalytic oxidation of NO. Significant progress has been made in the fabrication of efficient photocatalytic devices in recent years, with Z-scheme-based heterojunctions proving to be particularly successful. The review looks into the various methodologies used to create Z-scheme-based heterojunctions as well as photocatalytic NO oxidation mechanisms. Recent studies on photocatalysts employing Z-scheme heterojunctions for the photocatalytic oxidation of NO are also discussed. The possibilities for new opportunities as well as the present challenges, barriers, advances, and solutions have been emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.