Abstract

The spine is one of the most common sites of bony metastases, and its involvement leads to significant patient morbidity. Surgical management in these patients is aimed at improving quality of life and functional status throughout the course of the disease. Resection of metastases often leads to critical size bone defects, presenting a challenge to achieving adequate bone regeneration to fill the void. Current treatment options for repairing these defects are bone grafting and commercial bone cements; however, each has associated limitations. Additionally, tumor recurrence and tumor-induced bone loss make bone regeneration particularly difficult. Systemic therapeutic delivery, such as bisphosphonates, have become standard of care to combat bone loss despite unfavorable systemic side-effects and lack of local efficacy. Developments from tissue engineering have introduced novel materials with osteoinductive and osteoconductive properties which also act as structural support scaffolds for bone regeneration. These new materials can also act as a therapeutic reservoir to sustainably release drugs locally as an alternative to systemic therapy. In this review, we outline recent advancements in tissue engineering and the role of translational research in developing implants that can fully repair bone defects while also delivering local therapeutics to curb tumor recurrence and improve patient quality of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.