Abstract
In this study, we advanced pedestrian travel monitoring using a novel data source: pedestrian push-button presses obtained from archived traffic signal controller logs at more than 1,500 signalized intersections in Utah over one year. The purposes of this study were to: (1) quantify pedestrian activity patterns; (2) create factor groups and expansion/adjustment factors from these temporal patterns; and (3) explore relationships between patterns and spatial characteristics. Using empirical clustering, we classified signals into five groups, based on normalized hourly/weekly counts (each hour’s proportion of weekly totals, or the inverse of the expansion factors), and three clusters with similar monthly adjustment factors. We also used multinomial logit models to identify spatial characteristics (land use, built environment, socio-economic characteristics, and climatic regions) associated with different temporal patterns. For example, we found that signals near schools were much more likely to have bimodal daily peak hours and lower pedestrian activity during out-of-school months. Despite these good results, our hourly/weekday patterns differed less than in past research, highlighting the limits of existing infrastructure for capturing all kinds of activity patterns. Nevertheless, we demonstrated that signals with push-button data are a useful supplement to existing permanent counters within a broader pedestrian traffic monitoring program.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.