Abstract

After decades of fast-paced technical advances, optical/infrared (O/IR) interferometry has seen a revolution in recent years: ▪ The GRAVITY instrument at the Very Large Telescope Interferometer (VLTI) with four 8-m telescopes reaches thousand-times-fainter objects than possible with earlier interferometers, and the Center for High Angular Resolution Astronomy array (CHARA) routinely offers up to 330-m baselines and aperture synthesis with six 1-m telescopes. ▪ The observed objects are fainter than 19 mag, the images have submilliarcsecond resolution, and the astrometry reaches microarcsecond precision. ▪ This led to breakthrough results on the Galactic Center, exoplanets, active galactic nuclei, young stellar objects, and stellar physics. Following a primer in interferometry, we summarize the advances that led to the performance boost of modern interferometers: ▪ Single-mode beam combiners now combine up to six telescopes, and image reconstruction software has advanced over earlier developments for radio interferometry. ▪ With a combination of large telescopes, adaptive optics (AO), fringe tracking, and especially dual-beam interferometry, GRAVITY has boosted the sensitivity by many orders of magnitude. Another order-of-magnitude improvement will come from laser guide star AO. In combination with large separation fringe tracking, O/IR interferometry will then provide complete sky coverage for observations in the Galactic plane and substantial coverage for extragalactic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call