Abstract

The paper offers a survey on recent advances in the technological platforms for photonic integrated optical transceivers and innovative transmission techniques supporting the capacity increase of optical networks, in view of forthcoming 5G requirements. Both indium phosphide (InP) and silicon (Si) platforms are considered, highlighting the most significant advantages of the two technologies and reporting on reference implementations of high-speed transmitters and receivers. Techniques to increase transmission capacity are discussed, with a goal to satisfy the specific and demanding constraints existing in the different optical network segments in terms of capacity, optical reach, maximum tolerated latency, and implementation cost. Finally, perspectives of the developed networks are addressed, focusing on techno-economic aspects and multivendor interoperability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.