Abstract

Nickel-based superalloys have served as the most competitive high temperature structural materials under highly stressed and aggressive operating conditions in a variety of applications for more than 60 years. The most demanding among all the applications has been the gas turbine aerofoil castings of modern aero-engines. These turbine parts operate in extremely aggressive environment of high velocity hot combustion gas-air mixture carrying highly corrosive ingredients at high pressure. Gas turbine aerofoil materials should therefore possess adequate resistance to creep, fatigue and aggressive environment. Materials design for such application therefore has been extremely challenging, particularly since the engine designers always aim at higher turbine entry temperature (TET) in order to achieve greater engine thrust and better fuel efficiency. In spite of enormous efforts made in the recent past towards developing ceramics and their composites, Ni-based superalloys continue to be most reliable blade and vane materials offering always the highest TET. This has been possible through better alloy design, improved blade cooling schemes, protective coatings and directional solidification (DS) of either columnar grains or single crystals (SC) along the most favorable 〈001〉 texture. During the last six decades, TET has gone up by about 500K. This article covers recent advances in cast Ni-based superalloys, including our own efforts in this direction. Extensive research at DMRL has led to the development of new generation Ni-based superalloys, designated as DMD-4 and DMS-4 for DS and SC processing, respectively. Simultaneously, expertise has been developed to cast DS and SC components for aero-engines. Technology has also been established for pilot scale production of these components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call