Abstract
The HiPER project, phase 4a, is evolving. In this study we present the progress made in the field of neutronics and radiological protection for an integrated design of the facility. In the current model, we take into account the optical systems inside the target bay, as well as the remote handling requirements and related infrastructure, together with different shields. The last reference irradiation scenario, consisting of 20MJ of neutron yields, 5 yields per burst, one burst every week and 30 years of expected lifetime is considered for this study. We have performed a characterization of the dose rates behavior in the facility, both during operation and between bursts. The dose rates are computed for workers, regarding to maintenance and handling, and also for optical systems, regarding to damage. Furthermore, we have performed a waste management assessment of all the components inside the target bay. Results indicate that remote maintenance is mandatory in some areas. The small beam penetrations in the shields are responsible for some high doses in some specific locations. With regards to optics, the residual doses are as high as prompt doses. It is found that the whole target bay may be fully managed as a waste in 30 years by recycling and/or clearance, with no need for burial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.